Modern Computational Finance
Modern Computational Finance

AAD and Parallel Simulations
with professional implementation in C++

ANTOINE SAVINE

Preface by Leif Andersen

WILEY
To my wife Audrey, who taught me to love.

To my children, Simon, Sarah, and Anna, who taught me to care.

To Bruno Dupire, who taught me to think.

To Jesper Andreasen, who believed in me when nobody else would.

And to my parents, Svetlana and Andre Savine, who I wish were with us to read my first book.

—Antoine Savine
Contents

Modern Computational Finance xi
Preface by Leif Andersen xv
Acknowledgments xix
Introduction xxi
About the Companion C++ Code xxv

PART I
Modern Parallel Programming 1
Introduction 3

CHAPTER 1
Effective C++ 17

CHAPTER 2
Modern C++ 25
2.1 Lambda expressions 25
2.2 Functional programming in C++ 28
2.3 Move semantics 34
2.4 Smart pointers 41

CHAPTER 3
Parallel C++ 47
3.1 Multi-threaded Hello World 49
3.2 Thread management 50
3.3 Data sharing 55
3.4 Thread local storage 56
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>False sharing</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Race conditions and data races</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>Locks</td>
<td>64</td>
</tr>
<tr>
<td>3.8</td>
<td>Spinlocks</td>
<td>66</td>
</tr>
<tr>
<td>3.9</td>
<td>Deadlocks</td>
<td>67</td>
</tr>
<tr>
<td>3.10</td>
<td>RAII locks</td>
<td>68</td>
</tr>
<tr>
<td>3.11</td>
<td>Lock-free concurrent design</td>
<td>70</td>
</tr>
<tr>
<td>3.12</td>
<td>Introduction to concurrent data structures</td>
<td>72</td>
</tr>
<tr>
<td>3.13</td>
<td>Condition variables</td>
<td>74</td>
</tr>
<tr>
<td>3.14</td>
<td>Advanced synchronization</td>
<td>80</td>
</tr>
<tr>
<td>3.15</td>
<td>Lazy initialization</td>
<td>83</td>
</tr>
<tr>
<td>3.16</td>
<td>Atomic types</td>
<td>86</td>
</tr>
<tr>
<td>3.17</td>
<td>Task management</td>
<td>89</td>
</tr>
<tr>
<td>3.18</td>
<td>Thread pools</td>
<td>96</td>
</tr>
<tr>
<td>3.19</td>
<td>Using the thread pool</td>
<td>108</td>
</tr>
<tr>
<td>3.20</td>
<td>Debugging and optimizing parallel programs</td>
<td>113</td>
</tr>
</tbody>
</table>

PART II

Parallel Simulation

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Asset Pricing</td>
<td>127</td>
</tr>
<tr>
<td>5</td>
<td>Monte-Carlo</td>
<td>185</td>
</tr>
<tr>
<td>6</td>
<td>Serial Implementation</td>
<td>213</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Financial products</td>
<td>127</td>
</tr>
<tr>
<td>4.2</td>
<td>The Arbitrage Pricing Theory</td>
<td>140</td>
</tr>
<tr>
<td>4.3</td>
<td>Financial models</td>
<td>151</td>
</tr>
</tbody>
</table>

Chapter 5

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>The Monte-Carlo algorithm</td>
<td>185</td>
</tr>
<tr>
<td>5.2</td>
<td>Simulation of dynamic models</td>
<td>192</td>
</tr>
<tr>
<td>5.3</td>
<td>Random numbers</td>
<td>200</td>
</tr>
<tr>
<td>5.4</td>
<td>Better random numbers</td>
<td>202</td>
</tr>
</tbody>
</table>

Chapter 6

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>The template simulation algorithm</td>
<td>213</td>
</tr>
<tr>
<td>6.2</td>
<td>Random number generators</td>
<td>223</td>
</tr>
<tr>
<td>6.3</td>
<td>Concrete products</td>
<td>230</td>
</tr>
<tr>
<td>6.4</td>
<td>Concrete models</td>
<td>245</td>
</tr>
</tbody>
</table>
Contents ix

6.5 User interface 263
6.6 Results 268

CHAPTER 7
Parallel Implementation 271
7.1 Parallel code and skip ahead 271
7.2 Skip ahead with mrg32k3a 276
7.3 Skip ahead with Sobol 282
7.4 Results 283

PART III
Constant Time Differentiation 285

CHAPTER 8
Manual Adjoint Differentiation 295
8.1 Introduction to Adjoint Differentiation 295
8.2 Adjoint Differentiation by hand 308
8.3 Applications in machine learning and finance 315

CHAPTER 9
Algorithmic Adjoint Differentiation 321
9.1 Calculation graphs 322
9.2 Building and applying DAGs 328
9.3 Adjoint mathematics 340
9.4 Adjoint accumulation and DAG traversal 344
9.5 Working with tapes 349

CHAPTER 10
Effective AAD and Memory Management 357
10.1 The Node class 359
10.2 Memory management and the Tape class 362
10.3 The Number class 379
10.4 Basic instrumentation 398

CHAPTER 11
Discussion and Limitations 401
11.1 Inputs and outputs 401
11.2 Higher-order derivatives 402
11.3 Control flow 402
11.4 Memory 403

CHAPTER 12
Differentiation of the Simulation Library 407
 12.1 Active code 407
 12.2 Serial code 409
 12.3 User interface 417
 12.4 Serial results 424
 12.5 Parallel code 426
 12.6 Parallel results 433

CHAPTER 13
Check-Pointing and Calibration 439
 13.1 Check-pointing 439
 13.2 Explicit calibration 448
 13.3 Implicit calibration 475

CHAPTER 14
Multiple Differentiation in Almost Constant Time 483
 14.1 Multidimensional differentiation 483
 14.2 Traditional Multidimensional AAD 484
 14.3 Multidimensional adjoints 485
 14.4 AAD library support 487
 14.5 Instrumentation of simulation algorithms 494
 14.6 Results 499

CHAPTER 15
Acceleration with Expression Templates 503
 15.1 Expression nodes 504
 15.2 Expression templates 507
 15.3 Expression templated AAD code 524

Debugging AAD Instrumentation 541

Conclusion 547

References 549

Index 555
Modern Computational Finance

Computational concerns, the ability to calculate values and risks of derivatives portfolios practically and in reasonable time, have always been a major part of quantitative finance. With the rise of bank-wide regulatory simulations like CVA and capital requirements, it became a matter of survival. Modern computational finance makes the difference between calculating CVA risk overnight in large data centers and praying that they complete by morning, or in real-time, within minutes on a workstation.

Computational finance became a key skill, now expected from all quantitative analysts, developers, risk professionals, and anyone involved with financial derivatives. It is increasingly taught in masters programs in finance, such as the Copenhagen University’s MSc Mathematics - Economics, where this publication is the curriculum in numerical finance.

Danske Bank’s quantitative research built its front office and regulatory systems combining technologies such as model hierarchies, scripting of transactions, parallel Monte-Carlo, a special application of regression proxies, and Automatic Adjoint Differentiation (AAD).

In 2015, Danske Bank demonstrated the computation of a sizeable CVA on a laptop in seconds, and its full market risk in minutes, without loss of accuracy, and won the In-House System of the Year Risk award.
Wiley’s Computational Finance series, written by some of the very people who wrote Danske Bank’s systems, offers a unique insight into the modern implementation of financial models. The volumes combine financial modeling, mathematics, and programming to resolve real-life financial problems and produce effective derivatives software.

The scientific, financial, and programming notions are developed in a pedagogical, self-contained manner. The publications are inseparable from the professional source code in C++ that comes with them. The books build the libraries step by step and the code demonstrates the practical application of the concepts discussed in the publications.

This is an essential reading for developers and analysts, risk managers, and all professionals involved with financial derivatives, as well as students and teachers in Masters and PhD programs in finance.

ALGORITHMIC ADJOINT DIFFERENTIATION

This volume is written by Antoine Savine, who co-wrote Danske Bank’s parallel simulation and AAD engines, and teaches volatility and computational finance in Copenhagen University’s MSc Mathematics - Economics.

Arguably the strongest addition to numerical finance of the past decade, Algorithmic Adjoint Differentiation (AAD) is the technology implemented in modern financial software to produce thousands of accurate risk sensitivities within seconds on light hardware. AAD is one of the greatest algorithms of the 20th century. It is also notoriously hard to learn.

This book offers a one-stop learning and reference resource for AAD, its practical implementation in C++, and its application in finance. AAD is explained step by step across chapters that gently lead readers from the theoretical foundations to the most delicate areas of an efficient implementation, such as memory management, parallel implementation, and acceleration with expression templates.

The publication comes with a self-contained, complete, general-purpose implementation of AAD in standard modern C++. The AAD library builds on the latest advances in AAD research to achieve remarkable speed. The code is incrementally built throughout the publication, where all the implementation details are explained.
The publication also covers the application of AAD to financial derivatives and the design of generic, parallel simulation libraries. Readers with working knowledge of derivatives and C++ will benefit most, although the book does cover modern and parallel C++.

The book comes with a professional parallel simulation library in C++, connected to AAD. Some of the most delicate applications of AAD to finance, such as the differentiation through calibration, are also explained in words, mathematics, and code.
It is now 2018, and the global quant community is realizing that size does matter: big data, big models, big computing grids, big computations – and a big regulatory rulebook to go along with it all. Not to speak of the big headaches that all this has induced across Wall Street.

The era of “big finance” has been creeping up on the banking industry gradually since the late 1990s, and got a boost when the Financial Crisis of 2007–2009 exposed a variety of deep complexities in the workings of financial markets, especially in periods of stress. Not only did this lead to more complicated models and richer market data with an explosion of basis adjustments, it also emphasized the need for more sophisticated governance as well as quoting and risk management practices. One poster child for these developments is the new market practice of incorporating portfolio-level funding, margin, liquidity, capital, and credit effects (collectively known as “XVAs”) into the prices of even the simplest of options, turning the previously trivial exercise of pricing, say, a plain-vanilla swap into a cross-asset high-dimensional modeling problem that requires PhD-level expertise in computing and model building. Regulators have contributed to the trend as well, with credit capital calculation requirements under Basel 3 rules that are at the same level of complexity as XVA calculations, and with the transparency requirements of MiFID II requiring banks to collect and disclose vast amounts of trade data.

To get a quick sense of the computational effort involved in a basic XVA calculation, consider that such a computation typically involves path-wise Monte Carlo simulation of option trade prices through time, from today’s date to the final maturity of the trades. Let us say that 10,000 simulations are used, running on a monthly grid for 10 years. As a good-sized bank probably has in the neighborhood of 1,000,000 options on its books, calculating a single XVA adjustment on the bank’s derivatives holding will involve in the order of $10^3 \cdot 10 \cdot 12 \cdot 10^6 \approx 10^{11}$ option re-pricings, on top of the often highly significant effort of executing the Monte Carlo simulation of market data required for pricing in the first place. Making matters significantly worse is the fact that the traders and risk managers looking after the XVA positions will always require that sensitivities (i.e., partial derivatives) with respect to key risk factors in the market data are returned along with the XVA number itself. For complex portfolios, the number of sensitivities that
one needs to compute can easily be in the order of 10^3; if these are computed naively (e.g., by finite difference approximations), the number of option repricings needed will then grow to a truly unmanageable order of 10^{14}.

There are many interesting ways of chipping away at the practical problems of XVA calculations, but let us focus on the burdens associated with the computation of sensitivities, for several reasons. First, sensitivities constitute a perennial problem in the quant world: whenever one computes some quantity, odds are that somebody in a trading or governance function will want to see sensitivities of said quantity to the inputs that are used in the computation, for limit monitoring, hedging, allocation, sanity checking, and so forth. Second, having input sensitivities available can be very powerful in an optimization setting. One rapidly growing area of “big finance” where optimization problems are especially pervasive is in the machine learning space, an area that is subject to enormous interest at the moment. And third, it just happens that there exists a very powerful technique to reduce the computational burden of sensitivity calculations to almost magically low levels.

To expand on the last point above, let us note the following quote by Phil Wolfe ([1]):

There is a common misconception that calculating a function of n variables and its gradient is about $n + 1$ times as expensive as just calculating the function. This will only be true if the gradient is evaluated by differencing function values or by some other emergency procedure. If care is taken in handling quantities, which are common to the function and its derivatives, the ratio is usually 1.5, not $n + 1$, whether the quantities are defined explicitly or implicitly, for example, the solutions of differential equations...

The “care” in “handling quantities” that Wolfe somewhat cryptically refers to is now known as Algorithmic Adjoint Differentiation (AAD), also known as reverse automatic differentiation or, in machine learning circles, as backward propagation (or simply backprop). Translated into our XVA example, the promise of the “cheap gradient” principle underpinning AAD is that computation of all sensitivities to the XVA metric – no matter how many thousands of sensitivities this might be – may be computed at a cost that is order $\mathcal{O}(1)$ times the cost of computing the basic XVA metric itself. It can be shown (see [2]) that the constant in the $\mathcal{O}(1)$ term is bounded from above by 5. To paraphrase [3], this remarkable result can be seen as somewhat of a “holy grail” of sensitivity computation.

The history of AAD is an interesting one, marked by numerous discoveries and re-discoveries of the same basic idea which, despite its profoundness,\(^1\)

\(^1\)Nick Trefethen [4] classifies AAD as one of the 30 greatest numerical algorithms of the 20th century.
has had a tendency of sliding into oblivion; see [3] for an entertaining and illuminating account. The first descriptions of AAD date back to the 1960s, if not earlier, but did not take firm hold in the computer science community before the late 1980s. In Finance, the first published account took another 20 years to arrive, in the form of the award-winning paper [5].

As one starts reading the literature, it soon becomes clear why AAD originally had a hard time getting a foothold: the technique is hard to comprehend; is often hidden behind thick computer science lingo or is buried inside applications that have little general interest.² Besides, even if one manages to understand the ideas behind the method, there are often formidable challenges in actually implementing AAD in code, especially with management of memory or retro-fitting AAD into an existing code library.

The book you hold in your hands addresses the above challenges of AAD head-on. Written by a long-time derivatives quant, Antoine Savine, the exposition is done at a level, and in an applications setting, that is ideal for a Finance audience. The conceptual, mathematical, and computational ideas behind AAD are patiently developed in a step-by-step manner, where the many brain-twisting aspects of AAD are demystified. For real-life application projects, the book is loaded with modern C++ code and battle-tested advice on how to get AAD to run for real.

Select topics include: parallel C++ programming, operator overloading, tapes, check-pointing, model calibration, and much more. For both newcomers and those quaint exotics quants among us who need an upgrade to our coding skills and to our understanding of AAD, my advice is this: start reading!

²Some of the early expositions of AAD took place in the frameworks of chemical engineering, electronic circuits, weather forecasting, and compiler optimization.